
Learning from All Vehicles

Dian Chen Philipp KrÈahenbÈuhl

UT Austin

Abstract

In this paper, we present a system to train driving policies

from experiences collected not just from the ego-vehicle, but

all vehicles that it observes. This system uses the behav-

iors of other agents to create more diverse driving scenarios

without collecting additional data. The main difficulty in

learning from other vehicles is that there is no sensor in-

formation. We use a set of supervisory tasks to learn an

intermediate representation that is invariant to the viewpoint

of the controlling vehicle. This not only provides a richer sig-

nal at training time but also allows more complex reasoning

during inference. Learning how all vehicles drive helps pre-

dict their behavior at test time and can avoid collisions. We

evaluate this system in closed-loop driving simulations. Our

system outperforms all prior methods on the public CARLA

Leaderboard by a wide margin, improving driving score by

25 and route completion rate by 24 points.

1. Introduction

Autonomous driving has been one of the most anticipated

technologies since the advent of modern-day artificial in-

telligence. However, even after decades of exploration, we

have yet to see self-driving cars deployed at scale. One

main reason is the generalization. The world and its drivers

are more diverse than current planning approaches can han-

dle. Hand-designed classical planning [3, 16, 29, 45] does

not generalize gracefully to unseen or unfamiliar scenarios.

Learning based methods [4, 9, 11, 14, 37] fare better, but

suffer from a long tail of driving scenarios. The majority

of driving data consist of easy and uninteresting behaviors.

After all, humans drive thousands of hours before observing

a traffic accident [43], especially when driving an expensive

autonomous test vehicle. How do we tame the long-tail of

driving scenes? While many approaches rely on carefully

crafted safety-critical scenarios in simulation [33, 36, 42], or

collect massive data in the real world [4, 41], in this paper

we focus on an orthogonal direction.

We observe that, although many of us have not experi-

enced traffic accidents ourselves, everyone has at least ob-

served several accidents throughout our driving career. The

Change

Lane Right

? ?
Left

Straight

Figure 1. We present LAV, a mapless, learning-based end-to-end

driving system. LAV takes as input multi-modal sensor readings

and learns from all nearby vehicles in the scene for both perception

and planning. At test time, LAV predicts multi-modal future trajec-

tories for all detected vehicles, including the ego-vehicle. Picture

credit ± Waymo open dataset [41].

same applies to safety-critical driving scenarios: While the

data-collecting ego-vehicle might not experience accident-

prone situations itself, it is likely its driving logs contain

states that are interesting or safety-critical, but experienced

by other vehicles. Training on other vehicles’ trajectories

helps not only with sample efficiency, but also greatly in-

crease the chance that the model sees interesting scenarios.

Moreover, knowing other vehicles’ future trajectories helps

the ego-vehicle avoid collisions.

The main challenge with training on all vehicles lies in

the partial observability of other vehicles. Unlike the ego-

vehicle, other vehicles have only partially observed motion

trajectories, exposing no control commands or higher-level

goals. This makes direct training [10, 11, 12, 14, 38] on

other vehicles’ traces close to impossible. More importantly,

other vehicles have no accessible sensors. To learn from

other vehicles, a model has to infer their surrounding state

using the ego-vehicle’s sensors.

Our framework, Learning from All Vehicles (LAV), han-

dles the partial observability of both perception and motion

in one joint recognition, prediction, and planning stack. We

decouple the partial observability challenge of perception

and action using a privileged distillation approach [11]. LAV

first learns a perception model that outputs a viewpoint in-

variant representation using auxiliary supervision from 3D

detection and segmentation tasks. By definition, this auxil-

iary task does not distinguish between the ego-vehicle and

other vehicles in the scene and thus learns a viewpoint in-

variant representation. It handles the partial observability of

sensors. In parallel, LAV learns a privileged motion plan-

ner [11]. Instead of predicting steering and acceleration,

which are only available for the ego-vehicle, we use future

waypoints to represent the motion plan. We use ground-truth

computer-vision labels as inputs to the privileged motion

planner. Computer-vision labels ensure viewpoint invari-

ance, waypoints provide an invariant representation of mo-

tion. The privileged motion planner predicts trajectories of

all nearby vehicles and infers their high-level commands.

Finally, we combine the two models in a joint framework

using privileged distillation [11]. This final distillation learns

a motion prediction model from all vehicles using the view-

point invariant vision features of the perception model. The

distilled policy drives from raw sensor inputs alone.

We validate our method in the CARLA driving simu-

lator [17]. At the time of submission, our method ranks

first on the CARLA public leaderboard1. It attains a 61.85

driving score and a 94.46 route completion rate. Both

are the highest among all methods and outperform the

prior state-of-the-art method by a wide margin, increas-

ing driving score and route completion rate by 25 and 24

points respectively. Our method has also won the 2021

CARLA Autonomous Driving challenge2. Code available at

https://github.com/dotchen/LAV.

2. Related Work

Perception for autonomous driving is driven by ad-

vances in visual understanding and recognition. The percep-

tion system of a self-driving vehicle understands the scene by

inferring its nearby objects and surrounding road structures.

A typical perception system takes as input LiDAR scans and

performs object detection and tracking [19, 27, 47, 52, 54].

Liang et al. [32], Vora et al. [46] fuse RGB camera and

LiDAR scans for richer semantic information. For roads,

perception systems are categorized based on whether they

require pre-recorded HD-Map: map-based systems local-

ize themselves in the pre-recoded maps [30, 35, 51]; map-

less systems either perform online mapping [6, 21, 22], or

they implicitly predict road-related affordances [9, 40, 44].

Bansal et al. [4], Zeng et al. [48] represent the perception

outputs as bird’s-eye-viewed (BEV) spatial grids; more re-

cently, Gao et al. [20], Li et al. [31] represent perception

outputs in a parameterized vector space for a more compact

representation. Our approach takes multi-modal sensor data

as input and performs online mapping and object detection.

However, we do not directly use the predicted map to per-

form classical planning. Instead, we learn a planner from

1https://leaderboard.carla.org/leaderboard/
2https://ml4ad.github.io/

data using imitation learning. This planner uses every ve-

hicle it encounters on the road as a supervisory signal to

enhance the diversity of the training data.

Behavior prediction focuses on forecasting the future

state of driving scenes. In autonomous driving, a behav-

ior predictor takes as either the input representations ob-

tained from perception or raw sensor data; it predicts tra-

jectories of the dynamic objects in the driving scene. Luo

et al. [34], Zeng et al. [48] predict single, deterministic future

trajectories of the detected vehicles. Casas et al. [5], Zhao

et al. [50] model multi-modal future trajectories by using

conditional models. Chai et al. [7] predicts trajectories as

Gaussian mixtures to represent uncertainty in the euclidean

space. Cui et al. [15], Lee et al. [28] use latent variables

and VAEs to model actor and scene specific uncertainties.

Recently, Casas et al. [6], Hu et al. [23], Kamenev et al. [25]

combine perception and behavior prediction by directly pre-

dicting the occupancy maps. Our approach is highly related

to the task of behavior prediction, as it also trains on all

nearby vehicles’ trajectories. Our approach consists of a be-

havior predictor. In particular, it applies a conditional motion

planner on all nearby vehicles, including the ego-vehicle.

Learning-based motion planning uses imitation learn-

ing or reinforcement learning to plan future trajectories.

Pioneered by Pomerleau [37], imitation learning for au-

tonomous driving regresses sensor inputs to controls by imi-

tating the recorded expert trajectories. Codevilla et al. [14]

use conditional branching and high-level commands to ex-

tend imitative models for urban driving. Zeng et al. [48]

use imitation learning to train a cost volume predictor for

planning; Chen et al. [9], Sauer et al. [40] predict actions

from the learned affordances. Chen et al. [11] uses on-policy

distillation to handle distribution shift as well as to provide

stronger imitative supervision signals. Reinforcement learn-

ing, on the other hand, trains policies from a user-defined

reward function. Kendall et al. [26] train a lane following

driving policy using DDPG; Toromanoff et al. [44] use dis-

tributed Rainbow-IQN to train an urban driving policy with

competitive performance. Recently, Chen et al. [10] use

model-based reinforcement learning and distillation to train

a driving policy in an offline manner. Our approach builds

upon Chen et al. [11] and trains a motion planner using imi-

tation learning and distillation. However, unlike most prior

methods, we train motion planning on data from all nearby

vehicles in addition to the ego-vehicle.

Our idea of training the ego motion planner using data

from all vehicles is closely related to Filos et al. [18]

and Zhang and Ohn-Bar [49]. Filos et al. [18] extends offline

reinforcement learning to learn from other agents’ behaviors.

Zhang and Ohn-Bar [49] train a privileged imitation learning

policy that learns from other vehicles in a scene. Their policy

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 𝑟𝑎𝑑𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 𝐹𝑎𝑙𝑠𝑒
…

3D

Backbone

Steering

Acceleration

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 𝑟𝑎𝑑𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 𝐹𝑎𝑙𝑠𝑒
…

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 𝑟𝑎𝑑𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 𝐹𝑎𝑙𝑠𝑒
…

= 0.0

Motion

Planning

LiDAR

RGB Controller

High-level

Commands
Speed

(a) Overview of the inference pipeline.

3D

Backbone

Motion

Planning

Ego-Vehicle

Other Vehicles

RoI Align

Future Positions

Motion

Planning

LiDAR

RGB

(b) Overview of the training pipeline for the motion planning module.

Figure 2. Overview of the agent’s pipeline. A 3D Backbone fuses LiDAR measurements and semantic segmentation from RGB cameras to

produce a 2D spatial feature map. This shared feature map serves as an input to a motion planner. At inference time (a), we use the central

crop to predict the ego-vehicles trajectory. At training time (b), we additionally use ground-truth detections of nearby vehicles to train

a motion planner from all visible vehicles. Detection results use rotated regions of interest (RoIs) of the shared feature map. Finally, at

inference time, a controller aggregates multiple motion predictions into a single steering and acceleration command.

side-steps partial observability by training a policy that acts

only on the ground truth state of the simulator. It assumes

perfect perception or access to other agents’ sensors. LAV,

on the other hand, operates on raw sensor inputs and learns

a viewpoint invariant intermediate representation.

3. Learning from All Vehicles

We aim to build a deterministic driving model π that at

each timestep t maps sensor readings, high-level navigational

command, and vehicle state to raw control command at.

We opt for an end-to-end differentiable three-stage modular

pipeline: A perception module, a motion planner, and a

low-level controller. See Figure 2a for an overview.

The perception module is trained from massive labeled

supervision with two goals in mind: To create a robust and

generalizable representation of the surrounding world, and

to build vehicle-invariant features that help supervise the

motion planner. Section 3.1 describes the overall architecture

and training setup of the perception module. It maps raw

sensor readings to a map-view feature representation.

The motion planner uses the map-view features of the

perception model to produce a series of waypoints describ-

ing the future trajectory of the vehicles. Motion planners

commonly use supervision from just the ego-vehicle for this

prediction [11]. This supervision is quite sparse and pro-

vides the motion planner with just a single series of labels

per collected data point. In our framework, we learn mo-

tion planning from all vehicles that surround the ego-vehicle.

This is possible because our perception system produces

vehicle-invariant features as inputs; it is also because the

outputs of the motion planner, the future trajectories, can be

easily obtained from ground truth driving logs. Figure 2b

shows an overview of the motion planner training. Sec-

tion 3.2 describes the motion planner and its training setup.

Finally, a low-level controller converts motion plans into

actual steering and acceleration commands that are executed

on the vehicle. At test time, the low-level controller consid-

ers other vehicles’ motion plans to make emergency stop

decisions. Section 3.3 describes the controller.

3.1. A vehicle-independent perception model

The core objective of any perception module is to build

an intermediate representation that readily generalizes from

training to test conditions. In our setup, a secondary goal is

to build input features to the motion planner that are indistin-

guishable between the current vehicle and nearby vehicles.

The closer the output representations of the ego-vehicle and

other vehicles are, the better motion plans transfer between

those vehicles. Here, we opt for a metric map-based output

representation. In a metric map, rotated ROI pooling extracts

fixed-sized feature representations for training vehicles.

Specifically, we use three RGB cameras It = {I1t , I
2
t , I

3
t }

surrounding the vehicle and one LiDAR sensor Lt as an

input. We combine the color and LiDAR inputs using point-

painting [46] from RGB inputs and a light-weight Center-

Point [47] with PointPillars [27] 3D backbone. The back-

bone provides us with a map-view feature representation

f ∈ R
W×H×C of width W and height H with C channels.

We train the backbone network using a combination of se-

mantic segmentation and detection losses. See Figure 3a for

an overview. For every pixel in map-view, we predict a road

mask, solid and broken lane boundaries. We use a binary

classifier, and binary cross-entropy loss, as road and lane-

marking can overlap. In addition, we train a CenterPoint-

style detector [47] for pedestrians and vehicles. Most im-

portantly, we explicitly label the ego-vehicle in this detector.

This minimizes the feature distance between ego-vehicle

and other vehicles and enables better transfer. We pre-train

the perception model using fully labeled data and use rota-

tion augmentations around the ego-vehicle to increase the

robustness of the learned model.

Supervised pre-training has two advantages. It general-

izes better to unseen test conditions. It also learns a similar

feature representation for all vehicles. This feature represen-

tation is next used in the motion planner.

RGB

Mapping

Detection

3D

Backbone

LiDAR

(a) Perception training.

Ego

Others

Future Positions

Expert

Mot. Plan.

Expert

Mot. Plan.

(b) Privileged motion models training.

3D

Backbone

Ego

Others

Motion

Planning

Motion

Planning

Expert

Mot. Plan.

Expert

Mot. Plan.

(c) Final distillation.

Figure 3. Overview of our training pipeline. (a) We train a 3D perception model using detection and semantic mapping as the supervision

signal. Both tasks help learn a viewpoint-invariant spatial representation. Detection additionally predicts other vehicles’ poses which we

use to forecast their future trajectories at inference. The perception module produces a vehicle-independent feature representation used in

motion planning. (b) In parallel, we train a motion planner over ground truth perception. We train the model using traces from all nearby

vehicles using their future trajectory as supervision. (c) Finally, we combine the models learned in (a) and (b) using distillation. This model

learns how all vehicles plan in an end-to-end manner using only the ego-vehicles sensor inputs.

3.2. Learning to plan motion from all vehicles

The motion planner uses the output of the perception

system to predict a series of future waypoints describing po-

sitions the vehicles should steer towards. Here, we propose

a novel two-stage motion planner that combines geometric

GPS targets and discrete high-level commands. We use a

standard RNN formulation [28, 38] to predict n = 10 future

waypoints y1, . . . , yn ∈ R
2. The motion planner uses a high-

level command c and intermediate GNSS coordinate goal

g ∈ R
2 to perform different driving maneuvers. In CARLA,

GNSS goals are sampled every 50-100 meters and contain

a measurement error of around one meter. Possible high-

level commands c include turn-left, turn-right, go-straight,

follow-lane, change-lane-to-left, change-lane-to-right.

Let M(f̂ , c) :→ R
n×2 be the motion planner conditioned

on high-level command c and warped features f̂ for the

Region of Interest (RoI) at the location and orientation of

the vehicle in question. For all vehicles, we observe their

future trajectory to obtain supervision for future waypoints

y. For the ego-vehicle, the simulator provides a ground truth

high-level command ĉ and provides sufficient supervision to

train the motion planner

Lego
M = E

f̂ ,y,ĉ

[

∥y −M(f̂ , ĉ)∥1

]

. (1)

However, other vehicles do not expose their high-level com-

mands. While it may be possible to infer this command from

future trajectories alone, any rule-based inference will be

ambiguous and noisy. We instead allow the model to infer

the high-level command directly and optimize the plan for

the most fitting high-level command.

Lother
M = E

f̂ ,y

[

min
c

∥y −M(f̂ , c)∥1

]

. (2)

At training time we optimize both losses Lego
M + Lother

M

jointly.

The resulting motion planner M finds good coarse trajec-

tories for a wide range of traffic scenarios. It learns to plan

for all vehicles it sees. However, the resulting motion plan

may be noisy as high-level commands c are ambiguous.

In a second stage, we refine the motion plan using an ad-

ditional RNN-based motion planning network M ′(f̂ , g, ỹ) ∈
R

n×2. The motion refinement network uses the same ROI-

warped feature f̂ , the previously predicted motion plan ỹ,

and the more fine-grain GNSS goal g as input. We normalize

g in the ego-vehicle’s coordinate. It then produces a delta

to the original trajectory as output. Since GNSS goals are

only available for the ego-vehicle, we train the refinement

M̂ only on ego-vehicle trajectories

Lrefine
M = E

f̂ ,y,ỹ,ĝ

[

∥ỹ +M ′(f̂ , ĝ, ỹ)− y∥1

]

. (3)

During both training and testing, we roll out the same re-

finement network multiple times to recursively refine the

predicted trajectory. The above loss then applies to each step

of the rollout.

In practice, we learn the motion planner in a privileged

distillation framework [11]. See Figure 3b and Figure 3c for

an overview. We first learn motion planning on ground truth

trajectories and ground-truth perception outputs and regions

of interest using the losses (1)-(3). We then use the privileged

motion planner to supervise a motion planner that uses the

inferred perception outputs. During this second stage, we

supervise predictions on all high-level commands which

leads to a richer supervisory signal [11]. We additionally

distill a high-level command classifier for other vehicles

which we use later in the vehicle-aware controller. This

stage trains end-to-end by backpropagating gradients from

motion prediction and planning to the perception backbone,

allowing perception models to attend to low-level details in

the scene. We keep the pre-training perception loss in the

previous stage as an auxilliary supervision to regularize the

features.

3.3. Vehicle-aware control

The controller translates a motion plan into actual driv-

ing commands. We use two PID controllers for latitudinal

(steering) and longitudinal (acceleration) control. Both PID

controllers use basic statistics of the refined motion plan as

an input to produce a continuous output command. The lon-

gitudinal PID controller additionally uses the current speed

as an input to compute acceleration. We overwrite brak-

ing using a separate neural network classifier B in case of

traffic light and hazard stoppages. The classifier uses the

same image inputs as the perception module plus one addi-

tional camera with telephoto lenses to capture distant traffic

lights. The classifier learns the braking behavior of the data-

collecting ego-vehicle using recorded brake actions. Finally,

we reuse the motion plans learned from other vehicles to

detect potential collisions and perform hazard stops. Specifi-

cally, we use the 3D detections of the backbone to find all

nearby vehicles. For each, we use the motion planner M to

produce future trajectories over each high-level command.

We use all motion plans above the high-level command likeli-

hood threshold to check for collisions with the ego-vehicle’s

motion plan.

Perception. We use PointPillars [27] with PointPaint-

ing [46] as our multi-modal 3D perception backbone PB .

In particular, given RGB images captured from three frontal

facing camera {I0t , I
1
t , I

2
t } with extrinsic matrices E =

{E0, E1, E2}, we use a ERFNet [39] to compute their se-

mantic segmentation scores St = {S0
t , S

1
t , S

2
t }. We use

five semantic classes: ªbackgroundº, ªvehiclesº, ªroadsº,

ªlane markingsº and ªpedestriansº. For each LiDAR point

l ∈ Lt, we use PointPainting [46] to concatenate its corre-

sponding semantic classes using the segmentation scores:

lst = PointPaint(St, TE , lt). TE is the perspective transform

function.

For PointPillars, we use FC-64-64 with BatchNorm [24]

as its PointNet. We create pillars for LiDAR points for

x ∈ [−10m, 70m] and y ∈ [−40m, 40m]. Each pillar repre-

sents a 0.25m×0.25m spatial region. We use the default 2D

CNNs with multi-scale features to obtain the spatial features

ϕt ∈ R
192×160×160 with 0.5× resolution of the original pil-

lars. Unlike the original PointPillars which directly builds

dense pillars specified by the hyperparameters, we sparsely

represent the pillars. We also use a sparse PointNet to pro-

cess the corresponding sparse pillar features. This allows us

to process all pillars efficiently both in space and time.

We use a branching architecture for the detection and

mapping heads. We use a simplified one-stage Center-

Point [47, 53] formulation for BEV object detection. In

particular, we predict two ªcenternessº maps, one for vehi-

cles and one for pedestrians; we also predict an orientation

and bounding-box maps that are both class-agnostic. For

Ego τego

Camera

RGB

Traffic Light &

Hazard Brake

Others τothers

1 if len()>0:

2 = opt(,)

3

4 steer = LatPID()

5 throttle, brake = LonPID()

6

7 if > brake:

8 throttle, brake = 0,

9 return steer, throttle, brake

τothers

τego τego τothers

τego

τego

̂brake
̂brake

̂brake

Figure 4. Overview of our controller logic. The controller considers

all vehicles and their predicted multi-modal future trajectories. It

additionally uses an image-only brake predictor to handle traffic

sign and hazard stoppages.

mapping, we predict a BEV semantic map for roads, solid

lane markings and broken lane markings. Each map is gen-

erated using a separate 3 × 3 convolution followed by a

3× 3 up-convolution with stride 2, all from the shared back-

bone PB . At test time, we use a 2D max pooling layer as a

simplified version of NMS.

We additionally train a binary brake classifier that takes as

input all the four camera RGB images. We feed the telephoto

lens image and the stitched other three images to a ResNet-

18 followed by a global average pooling layer. This gives us

fixed-sized embeddings of z1, z2 ∈ R
512. We concatenate

z1, z2 and feed it to a linear layer to predict the binary brake.

Prediction and Planning. Given the ego-vehicle and a list

of vehicle detection, we use differentiable warping to crop a

rotated region of interest (RoI) f̂ i for each vehicle location

and yaw angle. A CNN followed by global average pooling

takes as input the rotated RoI features and returns a fixed-

sized embedding zi for each vehicle i. zi is shared among M

and M ′. The motion planner M uses a separate GRU [13]

for each high-level command. The GRU is rolled out n times

to produce an offset between consecutive waypoints. The

refinement motion planner M ′ uses two forms of recursions

and rollouts: rollouts along waypoint and rollouts along

refinement iterations. It predicts an offset from the prior

motion plan for each iteration. The refinement motion plan

relies on just a single GRU unit that takes the GNSS goal

g as an additional input. Both motion planners use a linear

layer to transform GRU states into the desired outputs.

Control. The controller C takes as input refined ego-

trajectory τ = M ′(f̂ , ỹ, ĝ). See Figure 4 for an overview. If

predicted trajectory τ leads to a collision with other traffic

participants, we adjust it. For now we perform a hard stop

using a hard-coded braking logic. If the predicted trajectory

is collision free, we follow it directly. We use two PID con-

trollers for latitudinal and longitudinal control respectively.

For latitudinal control, we use the 5-th point in τ5 as the aim

Rank Method
Driving

Score

Route

Completion

Infraction

Score

1 LAV 61.85 94.46 0.64
2 GRIAD [8] 36.79 61.85 0.60
3 TransFuser+ [2] 34.58 69.84 0.56
4 Rails [10] 31.37 57.65 0.56
5 IARL [44] 24.98 46.97 0.52
6 NEAT [12] 21.83 41.71 0.65
7 TransFuser [38] 16.93 51.82 0.42
8 LBC [11] 8.94 17.54 0.73

Table 1. Comparison of the driving score (main metric), route com-

pletion and infraction score on the public CARLA leaderboard [1]

(accessed March 2022). All three metrics are higher the better. De-

tailed infraction numbers reported in the supplement for reference.

point to compute the steering error. For longitudinal con-

trol, we use the difference between target speed inferred from

∥τk+1−τk∥ and the current speed vt to compute acceleration.

We use KP = 1.0,KI = 0.5,KD = 0.2 for the latitudinal

PID controller, and we use KP = 5.0,KI = 0.5,KD = 1.0
for the longitudinal PID controller. We overwrite the brake

control with the predicted brake score if it is larger than the

brake computed from the longitudinal controller.

4. Experiments

We evaluate our method on the CARLA simulator [17]

using closed-loop driving. We compare our approach with

the state-of-the-art methods on the public leaderboard, and

we perform ablation study on the effect of our design choices

locally. For our online leaderboard submission, we train on

all the 8 publicly available towns using a dataset of 400K

frames, collected with the CARLA behavior agent under

randomized weathers. For ablations, we only train on 4 out

of the 8 towns, resulting in a dataset of 186K frames. We test

on two other unseen towns. Details of the dataset statistics

are provided in the supplement for reference.

4.1. Comparison with state-of-the-art

Table 1 compares our method with prior state-of-the-

art methods on the CARLA public leaderboard [1]. The

CARLA leaderboard evaluates autonomous driving systems

under unseen and partially adversarial conditions. Vehicles

are tasked to complete a set of predefined routes in new

towns. For each route, the simulator adds dangerous sce-

narios such as suddenly crossing pedestrians or aggressive

lane-changing vehicles. These scenarios are modeled after

the NHTSA typology [1]. The leaderboard measures how

far self-driving vehicles proceed along a route within a fixed

time budget, and how often they cause traffic infractions.

In Table 1, we list three key metrics of the leaderboard: Driv-

ing Score, Route Completion, and Infraction Score. Route

Completion measures the distance percentage an agent is

able to complete; Infraction Score measures how often an

agent drives without causing infractions; Driving Score mea-

sures route completion rate weighted by infractions per route.

Driving Score and Route Completion are the two main met-

rics of comparison. A vehicle standing perfectly still will

receive an infraction score of 1. All three metrics are higher

the better. We refer readers to the official leaderboard [1] for

a more detailed description of the metrics.

We compare to the top entries on the leaderboard.

GRIAD [8] is the prior state-of-the-art. Rails [10] is a model-

based reinforcement-learning method that trains vision-

based driving policies from offline driving logs. IARL [44] is

based on state-of-the-art model-free reinforcement-learning

with distributed training. NEAT [12] uses imitation-learning

with attention and implicit functions. Transfuser [38]

uses imitation-learning with attention-based sensor fusion.

LBC [11] relies on knowledge distillation with imitation

learning. LBC is the closest comparison to our approach, as

we also use knowledge distillation and imitation learning as

a supervisory signal. However, LAV additionally uses other

observed vehicles to train the control policy.

LAV ranks first on the leaderboard, and it outperforms

the prior leading entry by a wide margin. It achieves 61.85

driving score, the highest among all methods, and 25 points

higher than on the previous leading method GRIAD. It also

achieves a 94.46 Route Completion, the highest among all

methods and 24 points higher than the next best method, and

32 points higher than the previous state-of-the-art. Moreover,

previous top methods, such as Rails and IARL, require 1M

and 40M frames to train the policies. Our method uses

only 400K training frames. Our approach has a relatively

high infraction score; however, we note that higher Route

Completion naturally leads to more infractions. A vehicle

that drives slowly or stands still causes fewer infractions but

struggles to complete its routes. See LBC for example.

4.2. Ablation study

We answer few important questions on our design choices.

We again evaluate on Driving Score, Route Completion and

Infraction Score. However, we cannot use the online leader-

board directly for these additional experiments. We instead

use a local setup with similar characteristics to the Leader-

board. In particular, we train on 4 out of 8 towns (Town01,

Town03, Town04 and Town06), and evaluate on 2 unseen

towns (Town02 and Town05). We select 4 representative

routes, 2 from each town, and we evaluate each route with 4

weathers: ªClear Noonº, ªCloudy Sunsetº, ªSoft Rain Dawnº

and ªHard Rain Nightº. We evaluate each setup for 3 runs

and report the mean and standard deviation. This results in

48 trials for each model. All ablated models use a similar

but slightly outdated setup as our leaderboard entry. The

only differences are: 1. the ablated models use U-Net as the

Driving

Score

Route

Completion

Infraction

Score

Vehicle

Collisions

Pedestrian

Collisions

Layout

Collisions

Red light

Violations

LAV 45.20 ± 6.35 91.55 ± 5.61 0.49± 0.06 0.92 ± 0.42 0.00± 0.00 0.33 ± 0.50 0.28± 0.28

Ego-vehicle only 38.56± 1.86 84.76± 5.12 0.46± 0.02 1.17± 0.50 0.00± 0.00 1.82± 0.06 0.34± 0.20
No distillation 28.23± 2.27 81.05± 6.04 0.36± 0.04 2.08± 0.34 0.00± 0.00 7.87± 0.15 0.21 ± 0.04

Table 2. Driving performance ablation of the key components of our approach on test towns. Infractions are measured as number of

occurrences per kilometer traveled. Mean and standard deviation are computed over three runs.

semantic segmentation backbone 2. the ablated models use

FC-32-32 in PointPillars and 3. slightly different controller

hyperparameters.

Table 2 studies the effects of our key design choices.

We compare to two variants of our approach: 1) One that

only trains on ego-vehicle data, 2) One that does not per-

form privileged distillation. We find that training on other

vehicles’ trajectories and viewpoints results in lower perfor-

mance on both route completion and infraction. The perfor-

mance degradation is smaller than expected likely because

our auxiliary perception supervision makes the motion mod-

els generalize well to distribution shifts, caused by both test

time errors and viewpoints changes. Not using privileged

distillation results in a larger performance drop. Without

distillation, the motion models need to train from both noisy

inputs and labels, thus tackling a much harder learning prob-

lem. Our full model achieves the highest scores in all three

metrics.

Table 3 studies the degree to which training on other

vehicles’ experiences affect the driving performance. We

evaluate three standards, where we only train vehicles within

5, 15 and 25 meters within the ego-vehicle, with 15 meters

being our default value. ≤ 5m and ≤ 15m performs equally

well, while ≤ 25m is slightly worse. We think this is due to

the fact that vehicles at range have too different of an appear-

ance in the sensor inputs which the auxiliary supervision is

unable to correct for. The LiDAR sensor in CARLA mimics

the Velodyne-64 rays model, which produces at most a few

dozen measurements for cars at a distance of 25m.

Table 4 studies different perception training schemes. We

compare the default staged training scheme (staged) with two

variants of joint training: 1) No perception pre-training (No

Pretrain.), and joint perception and motion training (Joint).

The first variant only optimizes the distillation loss, and the

latter optimize perception and distillation simultaneously.

Both variants do not freeze the 3D backbone. As expected,

models without perception training perform poorly. They suf-

fer from the distribution shifts caused by viewpoint changes.

Joint training also performs worse than staged straining, be-

cause solving perception and planning simultaneously is

harder than solving them in a disentangled manner, as also

observed by Chen et al. [11].

Table 5 studies the effect of our iterative refinement mod-

Vehicles

Range

Driving

Score

Route

Completion

Infraction

Score

≤ 5m 46.06 ± 1.70 88.77± 1.01 0.51± 0.02
≤ 15m 45.20± 6.35 91.55 ± 5.61 0.49± 0.06
≤ 25m 37.42± 3.09 89.56± 5.61 0.61 ± 0.12

Table 3. Driving performance in test towns of models trained with

different range of other vehicles. All models are the same except

for other vehicles’ maximum range used during training.

Perception

Training

Driving

Score

Route

Completion

Infraction

Score

No Pretrain. 8.47± 0.83 9.34± 0.35 0.90 ± 0.07
Joint 28.36± 2.11 79.58± 4.99 0.34± 0.02

Staged 45.20 ± 6.35 91.55 ± 5.61 0.49± 0.06

Table 4. Driving performance in test towns of models with different

perception training scheme. All models are the same except for

perception training.

Refinement

Iteration

Driving

Score

Route

Completion

Infraction

Score

K = 0 12.69± 2.86 35.85± 2.91 0.42± 0.03
K = 1 21.30± 1.10 85.90± 2.46 0.25± 0.01
K = 5 45.20 ± 6.35 91.55 ± 5.61 0.49 ± 0.06

Table 5. Driving performance ablation on the effect of motion re-

finement. All models are the same except for number of refinement

iterations.

ule. K = 0 means we directly use the trajectories predicted

by the motion planner Mf to drive. The default option

K = 5 performs the best, showing the benefits of iterative

motion refinement. Iterative refinement allows the model to

elastically figure out what residuals to learn. It also natu-

rally combines the semantic information from the high-level

command and the geometric information from the goals.

Detailed infraction numbers for Table 3, Table 4 and Ta-

ble 5 are provided in the supplement for reference.

4.3. Qualitative analysis

Figure 5 provides a qualitative analysis of our system.

It shows the combined input images, LiDAR point cloud,

Figure 5. Visualizations of the outputs from our system. Each row visualizes RGB camera inputs, predicted road geometries, and detection

and motion predictions respectively. Detection and motion prediction are used during inference; mapping is used for training only. For

mapping, we predict road, broken and solid (white) lane markings. For detection, we predict pedestrians’ and vehicles’ poses and bounding

boxes. We forecast multi-modal future trajectories with their corresponding likelihoods. Best viewed on screen.

the auxiliary segmentation predictions, detections, and pre-

dicted plans for all vehicles in the scene. The ego-vehicles

plan uses the provided high-level command, while all other

vehicles predict a distribution over possible future plans.

Note how all vehicles predict a reasonable and consistent

set of future plans aligning well with the inferred map-view

representation of the road and the potential other vehicles.

5. Discussion

In this paper, we present a mapless, end-to-end driving

system that trains from the experiences of all nearby vehi-

cles. Our system achieves state-of-the-art performance in

closed-loop driving simulation, and it outperforms prior lead-

ing methods by a wide margin. Limitations and potential

negative social impacts: Our approach is trained and eval-

uated in simulation alone and still incurs traffic infractions.

If directly deployed in the real world, it would most likely

result in traffic accidents (negative social impacts). On the

technical side, our current behavior predictor instantiated

by the conditional motion planner does not consider multi-

modality beyond the high-level commands. Extending our

work with a probabilistic formulation will strengthen its abil-

ity in handling the diverse behaviors of both the ego vehicle

and the other road users. Improving the motion predictor

beyond its raster representation is also an exciting direction.

Acknowlegments

We thank Tianwei Yin for his help on pillar generation

codes, Xingyi Zhou and Jeffrey Zhang for feedback on writ-

ing and figures. We thank TACC for providing part of our

computing resources. This work was supported by the NSF

Institute for Foundations of Machine Learning and NSF

award #1845485.

References

[1] Carla autonomous driving leaderboard (accessed

november 2021). https://leaderboard.

carla.org/leaderboard/, 2021. 6
[2] Expert drivers for autonomous driving. url-

https://kait0.github.io/files/master thesis bernhard jaeger.pdf,

2021. 6
[3] Andrew Bacha, Cheryl Bauman, Ruel Faruque,

Michael Fleming, Chris Terwelp, Charles Reinholtz,

Dennis Hong, Al Wicks, Thomas Alberi, David Ander-

son, et al. Odin: Team victortango’s entry in the darpa

urban challenge. Journal of field Robotics, 2008. 1
[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale.

Chauffeurnet: Learning to drive by imitating the best

and synthesizing the worst. RSS, 2019. 1, 2
[5] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intent-

net: Learning to predict intention from raw sensor data.

In CoRL, 2018. 2
[6] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3:

A unified model to map, perceive, predict and plan. In

CVPR, 2021. 2
[7] Yuning Chai, Benjamin Sapp, Mayank Bansal, and

Dragomir Anguelov. Multipath: Multiple probabilistic

anchor trajectory hypotheses for behavior prediction.

In CoRL, 2019. 2
[8] Raphael Chekroun, Marin Toromanoff, Sascha Hor-

nauer, and Fabien Moutarde. GRI: general rein-

forced imitation and its application to vision-based

autonomous driving. arXiv, 2021. 6
[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-

iong Xiao. Deepdriving: Learning affordance for direct

perception in autonomous driving. In ICCV, 2015. 1, 2
[10] Dian Chen, Vladlen Koltun, and Philipp KrÈahenbÈuhl.

Learning to drive from a world on rails. In ICCV, 2021.

1, 2, 6
[11] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp

KrÈahenbÈuhl. Learning by cheating. In CoRL, 2019. 1,

2, 3, 4, 6, 7
[12] Kashyap Chitta, Aditya Prakash, and Andreas Geiger.

Neat: Neural attention fields for end-to-end au-

tonomous driving. In ICCV, 2021. 1, 6
[13] Kyunghyun Cho, Bart van MerriÈenboer Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares Holger

Schwenk, and Yoshua Bengio. Learning phrase rep-

resentations using rnn encoder±decoder for statistical

machine translation. In EMNLP, 2016. 5
[14] Felipe Codevilla, Matthias MÈuller, Antonio LÂopez,

Vladlen Koltun, and Alexey Dosovitskiy. End-to-end

driving via conditional imitation learning. In ICRA,

2018. 1, 2
[15] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie

Liao, and Raquel Urtasun. Lookout: Diverse multi-

future prediction and planning for self-driving. In

ICCV, 2021. 2

[16] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,

and James Diebel. Practical search techniques in path

planning for autonomous driving. In STAIR, 2008. 1
[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla,

Antonio Lopez, and Vladlen Koltun. Carla: An open

urban driving simulator. In CoRL, 2017. 2, 6
[18] Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine,

Natasha Jaques, and Gregory Farquhar. Psiphi-learning:

Reinforcement learning with demonstrations using suc-

cessor features and inverse temporal difference learn-

ing. arXiv preprint arXiv:2102.12560, 2021. 2
[19] Davi Frossard, Simon Suo, Sergio Casas, James Tu,

Rui Hu, and Raquel Urtasun. Strobe: Streaming object

detection from lidar packets. In CoRL, 2020. 2
[20] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir

Anguelov, Congcong Li, and Cordelia Schmid. Vec-

tornet: Encoding hd maps and agent dynamics from

vectorized representation. In CVPR, 2020. 2
[21] Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav,

and Dan Levi. 3d-lanenet: end-to-end 3d multiple lane

detection. In CVPR, 2019. 2
[22] Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang,

Jinghao Miao, Jingao Wang, and Tae Eun Choe. Gen-

lanenet: A generalized and scalable approach for 3d

lane detection. In ECCV, 2020. 2
[23] Anthony Hu, Zak Murez, Nikhil Mohan, SofÂıa Dudas,

Jeff Hawke, Vijay Badrinarayanan, Roberto Cipolla,

and Alex Kendall. Fiery: Future instance prediction in

bird’s-eye view from surround monocular cameras. In

ICCV, 2021. 2
[24] Sergey Ioffe and Christian Szegedy. Batch normaliza-

tion: Accelerating deep network training by reducing

internal covariate shift. In ICML, 2015. 5
[25] Alexey Kamenev, Lirui Wang, Ollin Boer Bohan, Ish-

war Kulkarni, Bilal Kartal, Artem Molchanov, Stan

Birchfield, David NistÂer, and Nikolai Smolyanskiy.

Predictionnet: Real-time joint probabilistic traffic pre-

diction for planning, control, and simulation. arXiv

preprint arXiv:2109.11094, 2021. 2
[26] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw

Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu

Lam, Alex Bewley, and Amar Shah. Learning to drive

in a day. In ICRA, 2019. 2
[27] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing

Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:

Fast encoders for object detection from point clouds.

In CVPR, 2019. 2, 3, 5
[28] Namhoon Lee, Wongun Choi, Paul Vernaza, Christo-

pher B Choy, Philip HS Torr, and Manmohan Chan-

draker. Desire: Distant future prediction in dynamic

scenes with interacting agents. In CVPR, 2017. 2, 4
[29] John Leonard, Jonathan How, Seth Teller, Mitch

Berger, Stefan Campbell, Gaston Fiore, Luke Fletcher,

Emilio Frazzoli, Albert Huang, Sertac Karaman, et al.

A perception-driven autonomous urban vehicle. Jour-

nal of Field Robotics, 2008. 1
[30] Jesse Levinson, Michael Montemerlo, and Sebastian

Thrun. Map-based precision vehicle localization in

urban environments. In RSS, 2007. 2
[31] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmap-

net: An online hd map construction and evaluation

framework. In CVPR Workshop, 2021. 2
[32] Ming Liang, Bin Yang, Shenlong Wang, and Raquel

Urtasun. Deep continuous fusion for multi-sensor 3d

object detection. In ECCV, 2018. 2
[33] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-

Walz, Jakob Erdmann, Yun-Pang FlÈotterÈod, Robert

Hilbrich, Leonhard LÈucken, Johannes Rummel, Peter

Wagner, and Evamarie Wieûner. Microscopic traffic

simulation using sumo. In ITSC, 2018. 1
[34] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and

furious: Real time end-to-end 3d detection, tracking

and motion forecasting with a single convolutional net.

In CVPR, 2018. 2
[35] Wei-Chiu Ma, Ignacio Tartavull, Ioan Andrei Bârsan,

Shenlong Wang, Min Bai, Gellert Mattyus, Namdar

Homayounfar, Shrinidhi Kowshika Lakshmikanth, An-

drei Pokrovsky, and Raquel Urtasun. Exploiting sparse

semantic hd maps for self-driving vehicle localization.

In IROS, 2019. 2
[36] Zhenghao Peng, Quanyi Li, Ka Ming Hui, Chunxiao

Liu, and Bolei Zhou. Learning to simulate self-driven

particles system with coordinated policy optimization.

In NeurIPS, 2021. 1
[37] Dean A Pomerleau. Alvinn: An autonomous land

vehicle in a neural network. In NeurIPS, 1989. 1, 2
[38] Aditya Prakash, Kashyap Chitta, and Andreas Geiger.

Multi-modal fusion transformer for end-to-end au-

tonomous driving. In CVPR, 2021. 1, 4, 6
[39] Eduardo Romera, JosÂe M Alvarez, Luis M Bergasa, and

Roberto Arroyo. Erfnet: Efficient residual factorized

convnet for real-time semantic segmentation. ITS, 2017.

5
[40] Axel Sauer, Nikolay Savinov, and Andreas Geiger.

Conditional affordance learning for driving in urban

environments. In CoRL, 2018. 2
[41] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aure-

lien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,

Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scal-

ability in perception for autonomous driving: Waymo

open dataset. In CVPR, 2020. 1
[42] Simon Suo, Sebastian Regalado, Sergio Casas, and

Raquel Urtasun. Trafficsim: Learning to simulate real-

istic multi-agent behaviors. In CVPR, 2021. 1
[43] Brian Tefft. Rates of motor vehicle crashes, injuries

and deaths in relation to driver age, united states, 2014-

2015. In AAA Foundation for Traffic Safety., 2017.

1

[44] Marin Toromanoff, Emilie Wirbel, and Fabien

Moutarde. End-to-end model-free reinforcement learn-

ing for urban driving using implicit affordances. In

CVPR, 2020. 2, 6
[45] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christo-

pher Baker, Robert Bittner, MN Clark, John Dolan,

Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-

tonomous driving in urban environments: Boss and the

urban challenge. Journal of Field Robotics, 2008. 1
[46] Sourabh Vora, Alex H Lang, Bassam Helou, and Os-

car Beijbom. Pointpainting: Sequential fusion for 3d

object detection. In CVPR, 2020. 2, 3, 5
[47] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl.

Center-based 3d object detection and tracking. In

CVPR, 2021. 2, 3, 5
[48] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat,

Bin Yang, Sergio Casas, and Raquel Urtasun. End-

to-end interpretable neural motion planner. In CVPR,

2019. 2
[49] Jimuyang Zhang and Eshed Ohn-Bar. Learning by

watching. In CVPR, 2021. 2
[50] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben-

jamin Sapp, Balakrishnan Varadarajan, Yue Shen, Yi

Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-

driven trajectory prediction. In CoRL, 2020. 2
[51] Shuran Zheng and Jinling Wang. High definition map-

based vehicle localization for highly automated driving:

Geometric analysis. In ICL-GNSS, 2017. 2
[52] Xingyi Zhou, Vladlen Koltun, and Philipp KrÈahenbÈuhl.

Tracking objects as points. In ECCV, 2020. 2
[53] Xingyi Zhou, Dequan Wang, and Philipp KrÈahenbÈuhl.

Objects as points. arXiv preprint arXiv:1904.07850,

2019. 5
[54] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov,

Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam,

and Vijay Vasudevan. End-to-end multi-view fusion

for 3d object detection in lidar point clouds. In CoRL,

2020. 2

